Extracting local surface charges and charge regulation behavior from atomic force microscopy measurements at heterogeneous solid-electrolyte interfaces.

نویسندگان

  • Cunlu Zhao
  • Daniel Ebeling
  • Igor Siretanu
  • Dirk van den Ende
  • Frieder Mugele
چکیده

We present a method to determine the local surface charge of solid-liquid interfaces from Atomic Force Microscopy (AFM) measurements that takes into account shifts of the adsorption/desorption equilibria of protons and ions as the cantilever tip approaches the sample. We recorded AFM force distance curves in dynamic mode with sharp tips on heterogeneous silica surfaces partially covered by gibbsite nano-particles immersed in an aqueous electrolyte with variable concentrations of dissolved NaCl and KCl at pH 5.8. Forces are analyzed in the framework of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in combination with a charge regulation boundary that describes adsorption and desorption reactions of protons and ions. A systematic method to extract the equilibrium constants of these reactions by simultaneous least-squared fitting to experimental data for various salt concentrations is developed and is shown to yield highly consistent results for silica-electrolyte interfaces. For gibbsite-electrolyte interfaces, the surface charge can be determined, yet, an unambiguous identification of the relevant surface speciation reactions is not possible, presumably due to a combination of intrinsic chemical complexity and heterogeneity of the nano-particle surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling, Simulation and Characterization of Atomic Force Microscopy Measurements for Ionic Transport and Impedance in PEM Fuel Cells

The polymer electrolyte membrane fuel cell is a power source with the potential for reducing green-house gas emissions. Characterizing the electrolyte of a fuel cell is an important procedure for assessing the performance of the entire device. Atomic force microscopy (AFM) is one of the major instruments for such characterization, since it can be used for determining the surface potential and/o...

متن کامل

Direct observation of ionic structure at solid-liquid interfaces: a deep look into the Stern Layer

The distribution of ions and charge at solid-water interfaces plays an essential role in a wide range of processes in biology, geology and technology. While theoretical models of the solid-electrolyte interface date back to the early 20th century, a detailed picture of the structure of the electric double layer has remained elusive, largely because of experimental techniques have not allowed di...

متن کامل

Charge heterogeneity of surfaces: mapping and effects on surface forces.

The DLVO theory treats the total interaction force between two surfaces in a liquid medium as an arithmetic sum of two components: Lifshitz-van der Waals and electric double layer forces. Despite the success of the DLVO model developed for homogeneous surfaces, a vast majority of surfaces of particles and materials in technological systems are of a heterogeneous nature with a mosaic structure c...

متن کامل

Superviscosity and electroviscous effects at an electrode/aqueous electrolyte interface: an atomic force microscope study.

Several authors observed in the past a larger than twofold increase in viscosity of organic liquids under the influence of an electric field of the order of 10(6) V/m. This was called electro viscous effect (EVE). Significantly higher electric fields, of up to 10(8)-10(9) V/m, arise in the electric double layer in solutions close to an electrode. Therefore, the viscosity can be expected to incr...

متن کامل

Understanding the Interface of Liquids with an Organic Crystal Surface from Atomistic Simulations and AFM Experiments

A strong ordering of solvent molecules in the solid−liquid interface of a typical and characteristic organic crystal (p-nitroaniline) is observed in state-of-the-art atomic force microscopy experiments. In the current work, we use both molecular dynamics (MD) simulations and experiments in different solvents to provide a detailed understanding of the nature of the solid−liquid interface. The st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 39  شماره 

صفحات  -

تاریخ انتشار 2015